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X1

Nomenclature

A Coefficient defined in equation (3.16)

a  Channel width, m

b  Channel height, m

B Coefficient defined in equation (3.17)
C  Coefficient defined in equation (3.18)
C. Coefficient defined in equation (3.19)

Da, Da’, Modified Darcy number and Darcy number, Da= Da’'/ € =K/ €D,

De Dean number = { Re ’D th )

D, Hydraulic dimeter = (4 x cross-sectional area / witted perimeter)
f Friction factor

F  Porous media inertia coefficient

K Permeability of the porous structure, m’

k. Effective thermal conductivity, W/m. °C

ki Fluid thermal conductivity, W/m. °C

Nu Local Nusselt number

Nu Average Nusselt number

P  Pressure, Pa

p  Dimensionless pressure = (D, P/pv?)

q any quantity of dependent variables

Pr,Pr’ Modified Prandt] number and Prandtl number, Pr = € Pt’
r  Curvature ratio = { R/Dy)

R Radius of coiled tube, m




Xn

pWD

Re Reynolds number ( h )

t  Dimensionless temperature

tm Dimensionless bulk mean temperature

T  Temperature, K

Tw Temperature of tube wall, K

UV, W Velocity components in the X, Y, and Z directions , m/s
u, v, w Dimensionless velocity components, = (U, V, W)Dy/v

V  Volume occupied by fluid and solid matrix, m’

w Dimensionless average axial velocity

X,Y,Z Cartesian coordinates

X, ¥, Z Dimensionlesé coordinates, = (X, Y, Z)/Dy

Greek symbols

o thermal diffusivity =(k¢/ €pico

€  Porosity = (VdV)

£ Convergence criterion used in the numerical procedure
A Aspect ratio = (b/a)

p Dynamic viscosity, kg/ms

v Kinematic viscoéity, m?/s

& Dimensionless axial component of vorticity

p Density, kg/m’

T Average wall shear stress defined in equation (5.3), N/m?
\} Dimensionless stream function

9 Any quantity associated with the fluid(V,T, P, ...)




X1

Subscripts

¢ Curved channel

D Darcian

e Effective quantity for the fluid and solid matrix
f Fluid

p Particle of porous media

s  Straight channel

v Viscous

w  Wall
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Laminar Flow and Heat Transfer in Curved Tubes
Filled with Saturated Porous Media

By
Omar M. Jdaitawi

Supervisor
Prof. Nasri J. Rabadi
Abstract
This study presents a numerical solution based on the finite element method, for
a fully developed laminar flow and heat transfer in curved rectangular channels,
filled with saturated porous media.

It is found that Darcy number has a significant cffect on the average
Nusselt number and friction factor, The effect of aspect ratio is also studied. It is
shown that the average Nusselt number is weakly affected by decreasing the aspect
ratio. Solufions for Prandtl numbers ranging from 0.05 ¢o 5 are obtained. It is
found that the average Nusselt number is greatly affected by Prandtl number in
porous media. Stream function contours and temperature contours are presented
to show their strong dependence on Dean number. Solutions for Dean number as
high as 800 are obtained, and Darcy number ranging from 1x10® to one is also
studied.

The wall average Nusselt number and beundary viscous friction are
presented as a function of Dean number De, Prandtl number Pr, and Darcy
number Da, and a correlation equations based on the least square method are

developed.




1. INTRODUCTION

Fluid flow and heat transfer in curved pipes or ducts is of importance in several
engineering applications, such as pipe bends, cooling and heating systems, blade
passages of turbo machinery, aircraft intakes, heat exchangers, chemical reactors,
helical and spiral coils and many others.

Curved tube flows have been extensively studied both theoretically and
experimentally. The flow in curved tube is characterized by a secondary flow in a cross
sectional plane normal to the main flow, Truesdell et al.(1970) and Patankar et
al.(1974). The nature of which depends upon the Dean number De = Re(Dw/R)" ( Dy,
being the radius of the tube or width of the channel, R its radius of curvature and Re is
the Reynolds number ).

Centrifugal forces, which are proportional to the square of the axial
velocity, tend to push fluid in the central region towards the outer bend of the coiled
tube. This induces a pressure gradient directed toward the inner bend. The induced
pressure gradient is ‘almost uniform throughout the cross section of the tube. The axial
velocity, however, -varies widely throughout the cross-section. As a result, the
centrifugal force acting on the flow varies throughout the cross section.

In the central region, the centrifugal force assumes its maximum value and is
roughly in balance with pressure gradient. The net effect is a smooth movement of fluid
axially down the tube,

Near the tube wall, the axial velocity is slowed by viscous forces, hence the
pressure gradient is stronger than the centrifugal force and forces fluid inward along the
top and bottom of the tube wall. This inward movement along the walls begins at the

outer bend, where fluid from the core encounters the wall. It ends at the inner bend




where the two streams meet and then separate from the wall, and more into the central
region. The net effect is to produce two vortices of equal magnitude but of opposite
direction, with a horizontal line of symmetry separating them.

It has been made clear that the secondary flow resulting from the centrifugal
force causes the heat transfer coefficient, to be significantly higher than that in straight
tube.

Useful characteristics include, in addition to compactness, flow in curved tubes,
gives high rates of heat and mass transfer, enbances cross-sectional mixing, low axial
dispersion and extended laminar flow regime, and the transition from laminar to
turbulent flow occurs at higher Reynolds number than in straight tubes. Furthermore,
the secondary flows present in curved tube cause a marked variation in local heat
transfer coefficients around the periphery oftube. A knowledge of this variation may
suggest advantages in instances where only a portion of the peripheral boundary is
available for transport processes.

On the other hand, heat transfer in porous media has been the subject of
pumerous investigations due to increasing interest in chemical catalytic reactors,
building thermal insulation, heat exchangers, petroleum reservoirs, geothermal
operations, packed sphere beds and many others. This increased use of porous media
has made it essential to have a better understanding of the associated transport
processes.

Laminar flow and heat transfer through porous media in straight pipes, annuli
and channels, has been widely investigated theoretically and experimentally, covering
wide ranges of flow conditions, and porous matrix characteristics.

The importance of this study arises from the presence of a solid matrix in the

passage of a fluid flow in curved tube, which has less attention from investigators.
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Therefore, laminar flow and heat transfer in curved rectangular channels filled
with saturated porous medium is solved numericaily using finite element method. The
effect of curvature ratio, aspect ratio, and porous parameters on axial velocity profile
and secondary flow patterns is presented. The effect of Prandlt number on the axial

temperature profile, temperature contours and local Nusselt number is also studied.




2. LITERATURE REVIEW

2.1 Introduction

Flow in curved tubes differs from that in straight tubes, principally through
exhibiting a secondary flow in planes normal to the main flow. Centrifugal forces act at
right angles to the main direction of flow, so that the profile of axial velocity is
distorted, and the point at which the velocity has its peak is shifted to the outside. The
flow is three dimensional where as that in straight tube is two dimensional. In this
chapter, some of the previous work, which is conducted on flow and. heat transfer in

nonporous curved tubes, as well as straight porous tubes is presented,

2.2 Flow and Heat Transfer in Curved Tubes

Truesdell and Adler (1970) studied numerically the fully developed laminar
flow in helically coiled tubes. In this study, finite difference approximation solutions
were obtained for different cases of axial pressure gradient and curvature ratio from10
to 100. Dean numbers less than 200 were found to be accurate to within 0.02, higher
Dean number solutions were approximate. It was inferred that as the Dean number
increases, the secondary flow patterns shift back toward x = 0 and more upward and

downward in the y-direction.

Austin and Seader (1973) solved numerically the Navier-Stokes equations in

stream function vorticity form. Solutions were obtained for circular pipes using
curvature ratios ranging from 5 to 100. The cross sectional pressure distribution was
calculated and a correlation equation is presented for a diametral pressure drop in terms

of the Dean number.
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Prediction of laminar flow and heat transfer in helically coiled pipes was
presented by Patankar et al (1974). The effect of Dean number on the friction factor and
heat transfer is presented. Axial velocity profiles for developing and fully developed
regions were compared with experimental data. It is found that the velocity profile at
the hotizontal centerline is distorted from the parabolic shape with increasing Dean
number, It was also found that the local Nusselt number is increased with increase in
Dean number.

Kalb and Seader (1974) studied numerically fully developed flow in curved

pipes with uniform wall temperature. Solutions were obtained over a wide range of

Prandt! numbers and Dean numbers as large as 1200. A correlation equation for the

average Nusselt number over Prandtl number range from 0.7 to 5 was presented in the

following formula:

Nu = 0.836 De%-5 pr 0.1 De > 80 2.1)

Joseph et al. (1975) studied numerically laminar flow in helically coiled tubes of
square cross-section. In this work it is seen that up to Dean numbers of 100, the

expected secondary flow pattern appears with twin counter rotating vortices. Above

Dean number of 100, a new secondary flow regime, reported for the first time, appears
with four vortices. The numerical results were experimentally confirmed at Dean
number of 100. Flow visualization and pressure drop experiments were performed, and

a helically coiled tube of square cross section was constructed from clear acrylic plastic.

All Rights Resery

Fully developed laminar flow in curved rectangular channels was studied by
Cheng et al. (1976). This work was recognized by solving the equations for different
aspect ratios (length to width ratio) of 0.5, 1, 2, and 5, Dean number ranges from 5 to

715, and the appearance of an additional counter-rotating pair of vortices near the




central outer region of the channel, in addition to the familiar secondary flow at a
certain higher Dean number depending on the aspect ratio. Friction factor correlation
equations were also developed. It takes the following shape:

£/f,=0.0.1278 K * (1-0.257 K ~*+0.669 K" - 187.7K*>*

~ 5122K™) (2.2)

where the subscript ¢ denotes for curved tube and s for straight one. The coefficients in
the above equation were correlated for the case of square ducts. Coefficients for other
channe! configurations were reported. |

The influence of both centrifugal and buoyancy forces was studied analytically
by Yao and Berger (1977). Both borizontal and vertical flow in curved pipes is
considered. Solutions for these two cases are obtained by regular perturbations in the
Dean number, and the product of the Reynolds and Rayleigh numbers. It was noticed
that the combination of the centrifugal and buoyancy forces generates two vortices
whose line of symmetry intersects the direction of gravity at a finite angle. Also, the
line of symmetry is no longer a straight line when both body forces act on the fluid
particles.

Humphrey et al. (1977) gave both theoretical and experimental results for
laminar flow in a 90° bend duct. The calculated results were obtained by solving
Navier-Stokes equations in cylindrical coordinates. Flow visualization was used to
identify qualitatively the characteristics of the flow and laser Doppler anemometry to
quantify the velocity field. Secondary velocities up to 65% of the bulk longitudinal
velocity were calculated and small regions of recirculation close to the other corners of
the duct and in the upstream region, were also observed. The region of recirculation was
confirmed by the calculations. Measured and computed velocity contours were reported

for different planes with respect to the center of the bend.
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Rabadi (1980) investigated numerically pulsating flow and heat transfer in
curved tubes. In this study, the effects of pulsation on the transport rates are discussed.
Results for the shear stresses at different Dean numbers from 12 to 294, pulsation
parameter from 1 to 15 are presented. Temperature contours for different pulsation
parameters and time positions were reported. A considerable interest was also devoted
to the effect of pressure amplitude on the variation of Nusselt number, axial velocity,
temperature contours and axial shear stress.

Prusa and Yao (1982) investigated fully developed flow in heated curved tubes
numerically. In this work, the effect of buoyancy forces was considered, besides
centrifugal forces. Results for a Prandtl number of one are presented for moderate range
of Dean numbers, and the product of Reynolds and Raleigh numbers. It was also
reported that the mass flow rate is drastically reduced owing to the secondary flow for
a given axial pressure gradient, and the total heat transfer rate decreases for a more
curved tube and larger axial temperature gradient,

Hille et al. (1985) provide an experimental procedure, to discuss the
development flow in a 180" section of a curved square duct. A numerical solution was
obtained to compare with measured values. The streamwise flow velocity component
and the secondary flow component were measured as a function of Dean number and
azimuth angle (o), where ¢ = 0 represents the angle at the onset of curvature. A second
vortex with opposing sense of circulation was found to develop near the outer wall only
for Dean numbers between 150 and 300 (R/d = 6.45), in agreement with numerical
calculations.

Buoyancy effects on developed laminar curved tube flows, with axially uniform
heat flux, and peripherally uniform wall temperature were investigated by Lee et al.

(1985). The solution covers a wide range of Prandtl, Dean and Grashof numbers and




includes the curvature ratio as an explicit parameter. It is found that buoyancy acts to
increase the average Nusselt number distribution around the periphery. The curvature
ratio in the range 4-50 has a negligible explicit influence on the average Nusselt number
and skin friction factor, though it has a fairly large effect on the location of the maxitna.
Futagami and Aoyama (1988) investigated the laminar heat transfer in a
helically curved tube. In this work, numerical analysis was made taking into accouht
both centrifugal and buoyancy forces. The solutions cover a wide range of Prandtl
number, 1 to 100, The Velocity and temperature profiles, the friction factor, and heat
transfer coefficient are obtained. The effects of the secondary flow on heat transfer are
divided into three types: those in the cenirifugal, the buoyant and the composite range.

Correlation equations for Nusselt number were obtained:

6 6
{N“CJ =1+[0.195(DePr0‘5)] - (2.3)

Nu,

where Nu, denotes the Nusselt number for Rayleigh number Ra =0, and Nu, is the
Nusselt number for straight tube. Experimental results using water, in a helically coiled
tube of curvature ratio 101, were obtained to compare with calculated values. The effect
of the inclination of the tube was also discussed.

Yang and Chang (1993) gave a numerical study of fully developed laminar flow
and heat transfer in a curved pipe. The range of the parameters are the curvature ratio
(8 = Dy/R), varying from 0.01 to 0.9, the Reynolds number varying from 1 to 2000 and
the Prandtl number varying from 0.7 to 300. The results indicate except for Re<10, that
the friction ratio increases with increasing pressure gradient and increasing curvature
tatio. On the other hand, the heat transfer ratiq increases with increasing & until at a

certain value of 8, the heat transfer rate no longer varies significantly. Correlation




equations for friction ratio and heat transfer ratio were developed. For 8 <0.9 the

friction ratio is

%‘; 1 De < 500 (2.4)
5

Fe _0.397De 0-149 De > 500 (2.5)
S

The heat transfer ratio for 0.01<3 <09 , 0.7 <Pr<35, and 0.01<De < 10% is:

NuC — 0'722D60.098 8-—0.015 PI’O'ISI (26)

Nug
Gyves et al. (1998) investigated gravitational and centrifugal boundary effects in
curved square channels, with conjugated boundary conditions. Numerical solutions
were presented for 4.4<De<210.9, 0.01<Pr<7.2, and 0.01<¢ <20, where 66 = kwt/k:Dy
is dimensionless wall conduction parameter, defining the thermal boundary condition.

An increase in the curved channel forced convection average Nusselt number (Nu)

over the straight Nu was documented for all values of ¢ This increase in Nu can be

attributed to the presence of secondary flow vortices in the channel. Fluid density

variations in both the radial and vertical directions have been examined. Changes in

gravitational buoyancy (Gr,) have been shown to have a negligible effect on Nu, when
the influence of centrifugal boundary (Gr) is included.
Gyves and Irvine (2000), studied fully developed laminar flow, and conjugated

forced convection heat transfer in curved rectangular channels. The wall average

Nusselt number Nu, is presented as a function of the wall conduction parameter ¢, the

Dean number De, and the channel aspect ratio A (channel height/channel width). It is




10

noted that Nu is increased with increasing De for all values of ¢ It has been shown

that the curvature effect is less significant as the channel aspect ratio decreases from A

= 1. Solutions for straight channel are also included, and it is found that ¢eﬁ' is

independent of Afor A < %, where ¢¢[‘f is defined as the value of ¢at which a

constant wall temperature boundary condition can be assumed.

2.3 Flow and Heat Transfer in Straight Porous Tubes

Although research on fluid flow and heat transfer in porous media extends to
more than 50 years ago; only recent work on this field will be reviewed here. Most
analytical studies dealing primarily with the mathematical formulation are based on
Darcy’s law, which neglects the effects of solid bqundaries, and the inertia forces on
fluid flow and heat transfer through porous media. These effects are expected to
become more significant near the bopnclary and in high porosity media, thus causing the
application of Darcy’s law to be invalid. Moreover, recent increase in utilizing high
porosity media in contemporary technology progdes i‘urther need for a thorough

272

Vafai and Tien (1981), studied boundary and inertia effects on ﬂow' and heat

understanding of the boundary and inertia effects.

transfer in porous media. This is accomplished 'by, at first formulating the general
problem with these effects, and then applying the formulation to the specific case of
two;dimensional flow confined by an external boundary. The effect of boundary on
heat transfer is found to be quite important, and is more pronounced for the thermal
boundary layer. This is expected to happen at high Prandtl numbers, and large pressure
differences. The inertia effects increase with the higher permeability and the lower fluid

viscosity. Further more, the velocity gradients near the wall are bound to increase,
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Kaviany (1985), gives a closed form solution for fully developed laminar flow
through a porous channel bounded by isothermal parallel plates. Fully developed fields
for a simplified case, in which the inertia term is neglected. It is found that the velocity
profile depends strongly on the porous media shape factor, y = (W2e/K) ' where W is

channe! width, € is the porosity, and K is the permeability. As y increases, the central

region containing a uniform velocity distribution spreads further toward the plates. At
large ¥, the velocity variation is confined to a very thin layer adjacent to the plates. The
boundary frictional drag coefficient is proportional to v, while the bulk frictional drag is
proportional to v%. Also it is found that Nusselt number increases with an increase in v,
while the temperature profile does not change significantly with v. Its value at the
centre line increases as y increases.

Cheng and Hsu (1986) performed an analysis for a fully developed, forced
convective flow, through a packed sphere bed between concentric cylinders maintained
at different temperatures. The variation of the porosity near the wall was considered by
an exponential function, Analytical solution based on the method of asymptotic
expansions is obtained for the velocity. It is shown that velocity overshoots occur in the
variable porosity bed near the inner and outer cylinders.

Fluid flow and heat transfer characteristics of a fully developed forced
convective flow in a cylindrical packed tube with symmetric heating, are analyzed by
Cheng and Zhu (1987). The Darcy-Brinkman-Ergan model is used as the momentum
equation. The radial porosity variation of the packed column approximated by an
exponential function. The method of matched asymptotic expansion is applied to
construct a composite solution for the axial velocity. The effects of radial thermal
dispersion, and variable stagnant thermal conductivity are taken into consideration in

the energy equation. It is found that at high Reynolds numbers, the dimensionless radial
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temperature profile becomes relatively independent of the thermal boundary conditions
at the wall.

Poulikakos and Renkan (1987) investigated numerically, the effects of flow
inertia, variable porosity, and Brinkman friction, in a channel filled with porous media.
Two channel configurations were used: circular pipe and parallel plate channels. It was
found that the channeling phenomenon near the walls of both duct configurations
enhanced the thermal communication between the fluid solid matrix and the walls. This
fact yielded an overall of 12 percent increase in the value of Nusselt number, in the
paralle]l plate channel compared to the value predicted when the Darcy model was used.
Similarly, 22 percent increase in the value of Nusselt number for the circular channel in
the fully developed region was observed.

Vafai and Kim (1989), found an exact solution to the problem concerning
forced convection in a channel filled with porous medium. Results for velocity and
temperature profiles were obtained for two value of the Darcy number, these are
Da? = 10 and 30. It is shown that, for a high permeability porous medium the
thickness of the momentum boundary layer depends or both the Darcy number and the
inertia parameter, while that for a low permeability porous medium depends only on the
Darcy number. A significant increase in the rate of heat transfer, as the inertia
parameter increases, especially for high to medium permeability porous media was also
reported.

Mixed convection flow over vertical cylinder was studied by Chen et al. (1992)
taking the non-Darcian effects into consideration. These effects include, in addition to
the non-slip boundary condition, flow inertial force, and variable porosity, the
transverse thermal dispersion effect. Numerical results show that thermal dispersion

tends to enhance the heat transfer rate, while boundary and inertia effects decrease it.
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The large enhancement in heat transfer caused by dispersive transport was attributed to

the better mixing of convective fluid within the pores.

Hwaﬁg and Chao (1992), obtained a numerical solution for the effects of wall
conduction and Darcy number on laminar mixed convection flow. The flow and heat
transfer characteristics are greatly affected by the peripherally non-uniform wall
temperature  distribution. Secondafy flow patterns, isotherms, wall temperature
distributions, the friction factor, and the Nusselt number are presented for a flow in the
Darcian porous medium (Da ->0), to a pure ﬂu.id flow (Da — ), with Gr =0 -10'°,
and Pr = 0.1, 0.73, 7.2, and 100. It is seen that, the product fRe calculated for Darcy’s

friction and Forchheimer’s friction (inertia of porous matrix) are almost negligible

when Da™ < 1, and the flow behaves just like Poiseuille flow.

Kou and Lu (1993), provided a closed form solution for a fully developed mixed
convection in a vertical channel. Both the boundary and inertia effects of the porous
medium are considered, Different thermal boundary effects on channel wall are
investigated. It is found that the temperature distribution depends on the thermal
boundary conditions only. As to the velocity profile, it is a function of the pressure
gradient, in addition to the no-slip and thermal boundary conditions. The influence of
inertia effect is investigated by solving numerically the equations of motion.

Lan and Yhodadadi (1993) studied the effect of permeable walls on fluid flow
and heat transfer in porous channel. The transport eciuations are transformed to ordinary
differential equations following White (1991). For a given porous medium shape
parameter [y = 2H/ K/e )], where H is half channel width, it is shown that as the
blowing Reynolds number (B = VH/vy), V being the permeation velocity at the walls
increases, profiles of the axial velocity component, and temperature become flatter near

the symmetry axis, and the respective gradients near the wall increase markedly. For a
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given shape parameter, as the permeation at the walls is stfengthened, frictional drag
increases as a result of steep shearing next to the walls. For low Peclet numbers, the
enhanced Nusselt number exhibits a dependency on the shape parameter, but for high
Peclet numbers, the Nusselt number is independent of the shape parameter.

Hadim (1994) performed a numerical solution for laminar flow in porous
channel. Two configurations are considered: a fully porous channel, and a partially
porous channel, which contains porous layers above heat sources, and is non-porous
elsewhere. Heat transfer rate and pressure drop are evaluated for a wide ranges of Darcy

and Reynolds numbers. The results indicate that as the Darcy number decreases, a

significant increase in heat transfer is obtained, especially at the leading edge of heat
source. In the partially porous channel, it is found that when the width of the heat
source and the spacing between the porous layers are of the same magnitude, as the
channel height, the heat transfer enhancement is almost the same, as in the fully porous
channel, while the pressure drop is significantly lower. These results suggest that the
partially porous channel is a potentially attractive heat transfer augmentation technique
for electronic equipment cooling.

A numerical study is made to the heat transfer characteristics from forced
pulsating flow in a channel by Kim et al. (1994). The walls of the porous channe! are
assumed to be at uniform temperature. In comparison with the case of no pulsating
flow, the presence of flow pulsation brings forth a reduction in heat transfer in the
entrance region, and an enhancement of heat transfer at moderate downstream regions.
When Darcy number is large, the velocity profiles at low frequency parameter are
similar to the quasi-steady flows in a non-porous channel. For high frequency

parameter, only a narrow portion very close to the wall is affected. The axial pressure




gradient and skin friction coefficient are little affected by the changes in the frequency
parameter.

Sadrul et al. (1995) investigated asymmetric heating of packed channel. The
wall effects on the variation of porosity and thermal dispersion have been considered.
For éame Reynolds number, it was seen that velocity profile is affected markedly by
increasing particle diameter. The variation of Nusselt number with Reynolds number is
also compared with previous correlations and a good a agreement was observed for
three different particle size of the porous medium.

Varahasamy and Fand (1996) determined empirical correlation equations for the
average Nusselt number in spheres packed pipes. The equations cover the Darcy,
Forchheimer and turbulent regimes of flow. The results of experiments show that, for
equal pumping power, the method of packing tubes with spheres can pl‘OVidé heat
transfer enhancement two to seven times that of unpacked tubes, for laminar flow and
two to two and half times for turbulent flow.

Huang and Liu (1996) presented an analytic solution, for the developing flow in
a channel, filled with porous media. The effects of the inlet velocity, and Darcy number
on the variation of the velocity distribution were determined. It was also seen that the
downstream velocify profile is greatly affected by the Darcy number. Three different
inlet velocity profiles are examined, namely, linear, backward- triangle and parabolic
shapes. Tt is noted that for the same Darcy number, the parabolic inlet flow takes the
shortest distance to settle into the fully developed flow, whereas the linear inlet flow
takes the largest distance.

Nicld et al. (1996) studied forced convection flow in porous media. Isothermal
and isoflux boundary conditions are applied, and the Brinkman-Forchheimer extension

of Darcy’s equation is used. For the case of isoflux surfaces, it is found that when Da is
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large and F is small, the velocity profile is approximately parabolic, and the Nusselt
number is near 70/17. On the contrary, when Da is sufficiently small or F is sufficiently
large, the velocity profile is approximately uniform. Similar results are obtained for

isothermal surfaces case, but the Nusselt numbers are sialler.




3. THEORITICAL CONSIDERATIONS

In this work laminar flow and heat transfer in curved rectangular channels is
studied. The curved tube considered is a part of helical tube with zero pitch. The
physical configuration and the system of orthogonal toroidal coordinates (X, Y, Z) and
the corresponding velocity components (U, V, W) respectively is shown in Figure (3.1).
3.1 Assumptions

In developing the governing equations, a set of assumptions are imposed

thoughout this work. These are:

. The flow is laminar, hydrodynamically and thermally fully developed.

[a—

2. The fluid is viscous, incompressible, Newtonian with constant physical

properties.
3. The flow is steady.

4. Buoyancy effects and viscous dissipation are neglected.

wh

. The porous medium is homogeneous and isotropic and is saturated with a single
phase fluid.

6. The fluid and solid matrix are every where in local thermodynamic equilibrium.

7 . Negligible coil pitch.

3.2 Governing Equations

The governing equations for forced convection in porous media are developed
here using the local volume averaging technique. This is done by associating with each

point in the porous medium a small volume, ¥, bounded by a closed surface 4. If the

portion of ¥ containing the fluid is denoted by ¥, then the local volume average of
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Figure (3.1) System of toroidal coordinates for rectangular channel.
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a quantity associated with the fluid is defined as:
1 €
<p>=— [@dV=— [odV (3.1)
Vy Vf V
f f
Based on the assumptions stated in the previous section, the mass, momentum
and energy equations for an incompressible, steady flow through a porous medium in
curved tube are established here as in Vafai and Tien (1981 ) and Vafai ( 1984).
For the configuration shown in Figure (3.1), and dropping the averaging sign,

the governing equations can be written as follows, Cheng et al. (1976):

Continuity equation:

U d&v. U _
xtawtxar ! (3.2)

X-momentum equation

U ., dU W2 dp dU 1 dU
ve ——
UV R X M2 TR X
2 €
d g_l_ U > _Pg U
dY* (X+R) K

_;y?U (3.3.a)
Y-momentum equation
pf(Ug +Vg¥) 3-35 +uf(iz-«g-+£yz—+
dX< dY
1_dvy PpeV Pet < 2 (3.3.0)

1
X+R dX K KA
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Z-momentum equation

dW dW UW, R dP . d?°W 1 dW
UV oR T arRE M2 TR X
2w W | Pge
T a2 K
dY* (X+R) K

2
Fe
Pi” S w2 (3.3.¢)
/b
K/2
Energy equation
2 2
UdT+VdT WR dT _ d“T d-T 1 dT) (3.4)

XTI TRIRAZ Y %2 qy? | X+R dX

It should be noted here that, the first and second derivatives of the quantities in
the continuity and momentum equations with respect to the axial coordinate (Z )
vanished because the flow is fully developed except for the pressure, since it is the
driving force of the flow . Furthermore, the axial conduction term is neglected from the

energy equation compared with other terms.
Equations (3.3) represent the Brinkman-Forchhimer extended Darcy model,

Vafai and Tien (1981), in which the last two terms account for respectively, the

He €
pressure drop caused by the frictional drag (-f?W) and the inertia effect which

2
. . .. PeFe .
become appreciable at high velocities ( ;1 = w2 ), where pe denotes the fluid density,

ur is the fluid dynamic viscosity, & is the porosity, K is the permeability of the porous
structure, F is the inertia coefficient which depends on the permeability and the

geometry of the porous medium, and a. is the effective thermal diffusivity.
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A great deal of effort has been spent to develop an expression for K. In the case
of beds of particles or fibers, the hydraulic radius theory of Carman-Kozeny leads to the
following relationship, Nield et al. (1999);

K=—]3—%f—3— (3.5)
180(1-6)?
where D, is an effective average particle or fiber diameter. The constant 180 was
obtained by seeking a best fit with experimental results. This equation gives a
satisfactory results for media that consists of particles of approximately spherical shape.

It is relevant at this point to nondimensionalize the above equations here, by

introducing the following dimensionless variables:

X ;Y
Dy Dy
' e R
Dy Dy
D, U D,V
ueh verh
Ve Ve
D, W thP
W= p:
)
vf pr

Where Dy is the hydraulic diameter of the channel, v £ is kinematic viscosity of the

fluid. To nondimensionalize the energy equation, it is important to specify the thermal
boundary condition. The heat transfer boundary condition chosen in this work assumes
the temperature of the tube wall, Ty, varies linearly in the axial direction only, but it is
peripherally uniform, i.e

Tw =T(Z) (3.6)

Accordingly, the dimensionless temperature t is defined in the following form:
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T, -T
D, 0742)

where (8T/8Z) is the temperature gradient in the axial direction and it is constant for

(3.7

thermally fully developed flow.

A further approximation is made here, by neglecting the inertia term in the

momentum equations due to porous matrix. Substituting the above dimensionless
variables into equations (3.2) through (3.5) yields:

x- momentum Eq.

g du, du_ w2 __ 6p+62

Yo% "ay X+r O0X px2 M

8211 1 Ju u u
+ - - 3.8.a

y-momentum Eq.

Uax Y oy 6y ox2 +6y2 x+rox Da

2 2
A ov_ 6p 0cv 07V I ov_ v | (3.8.b)

z- momentum LEg.

2
8w+vc’9w+ uw _ -t 8p 0“w

ox 0y X+r x+raz Ox2 +

Pw 1 8w w W |
ay2+x+r6x (X+I‘)2 "Da (3'8'0)

and the energy equation is :

ot ot rw _1,8%t 9%t 1 dt
6X+V6y X+ Pr 8x2+6y2+x+r dx) (3.9)

where Da is the modified Darcy number and Pr is the modified Prandt] number defined

as:

S

S
—
2
B
%
o
)
<




and

k, =ek+(l- e)kg

where ¢¢ is the fluid specific heat, k. is the effective thermal conductivity, a. and the
effective thermal expansion coefficient.

One of the main difficulties in solving the flow and heat transfer problems is the
unknown pressure field, Fortunately in many cases the pressure field is not of primary
interest, and the problem can be made simple if the pressure is eliminated from the
solution process. This elimination can be achieved by using the vorticity stream

function approach.

At first, the pressure terms can be eliminated by differentiating x-momentum
with respect to y and differentiating y-momentum with respect to x and subtracting

them, the resulting equation is :

83u 8311 83u a3v

- + — +
6y3 ox> oy sz Ox 6y2
Ly 2 2y @%u 2Py
X+7r 8y ox axz ayz ayz

1 2u 6v)( ou 0V

((x+r)2 dx 0y oy 6x)m
1 8u ov ow
_ 2wl = :
Da(ay 8x)+ Way (3.10)
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Now, the stream function v is introduced in such away that the continuity

equation is identically satisfied i.e.

- 1 oy
u= XFr 3y (3.11)
D WA (3.12)
X+1 OX

Substituting for u and v in terms of y into the momentum equations results in two
differential equations in terms of the axial velocity w and the stream function v, but the
stream function equation is raised to the fourth order. By introducing the definit ion of

the axial vorticity :

2 2 |
1 o%y, 1 2%y L _ay (3.13)

€=x+r 6y2 X+T 6x2 (x+ r)2 OX

the fourth order equation is reduced to second order as well as the axial momentum

equation. The final set of dimensionless equations are :

Axial vorticity equation:

2 52
6:15 6§+Ad§+3 9 cpp 2w oW _ (3.14)

Axial momentum equation:

2 2
oc“w 0w ow ow r oP
+ +A +B C _— = .
a2 ay? OX 6y+ WY T Xr oz (3.15)
where :
oy
A=—(1-
x+r(1 y) (3.16)
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= 1
B=—_(2%) (3.17)
1 oy 1 1
C= (3.18)
(x+r)2 Y (x+r)? Da
Cyy = 1 oy 1 1 (3.19)

(x+ )2 0¥ (x+1)? " Da
The energy equation is unchanged except for substituting the velocities u and v

in terms of the stream function;

L@ b )(‘)(‘3‘*’)at v

x+r 0y X+170X" 5y xtr

(6t 0%t 1 ot

2+
Pr ax oy X+I 5%

) (3.20)

3.3 Boundary Conditions:

.Before discussing the boundary conditions, it is worth to note that we have a
symmetrical flow about the x-axis. Therefore the solution is obtained in the upper half
plane of the channel cross section, In the following, the boundary conditions for the
axial velocity, the stream function, the vorticity and the temperature are discussed

separately.

S
S
—
2
B
%
o
)
<

3.3.1 The axial velocity

The value of the axial velocity at the solid boundary is naturally zero, which is
the no-slip condition. The symmetrical flow along the positive and negative portions of
the horizontal centerline requires that the partial derivative of the axial velocity w with

respect to y 1s zero i.e.
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G =0 (3.21)

ay y:O

3.3.2 The stream function

It is clear that the tube wall can be considered a streamline, hence the value of the
stream function is constant at the wall. Also, because of symmetry, the horizontal tube
centerline is a stream line and its value is taken to be as that of the boundary value.
There is no unique value of the stream function, in fact the absolute value of the stream
function has no important physical significance. This can be noticed in the governing
equation where only the stream function derivatives appear. Thus for convenience, the
value of the stream function of the entire boundary is taken to be zero. This reasoning is

adapted from Rabadi ( 1980 ).

3.3.3 The Vorticity

Recalling the definition of the vorticity, equation(3.13):

£ = 1 821|1+ 1 621|1_ 1 oy
X+r6x2 X+I‘ay2 (x+r)2 0X

and referring to the solution domain Figure(3.2), we note that for all y equal to zero,
each term is identically zero. Since the stream function is constant along this line, all
derivatives with respect to x vanish while the second term is zero comes from the

definition of the stream function i.e.

_ 1oy |
T x+r Oy : (322)
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2
and since (g—u ) =0 along y = 0, this means that (a—-g—,-) = (, hence the vorticity at the
y oy

centerline is zero.

Now consider the value of the vorticity on the left and right sides of the plane. The
second term is zero because the stream function is constant along these lines, while the
third term is zero since it is by definition the no slip condition at the wall. Therefore the

vorticity on the vertical portions is given by:

2
_ 1 2%y |
éuxﬂaxz (3.23)

The value of the vorticity on the upper line of the region ie. y = b/2, is simply
given by :
2

cy (3.24)
y

(o

1
X+

E=

!

since the first and third terms vanish because the stream function is constant along this

line.

3.3.4 The Temperature

As mentioned in the part of developing the energy equation section (3.2), the
temperature at the periphery of any cross section is assumed to be constant, and it is
denoted by T,. Therefore the dimeﬁsionless temperature at the tube boundary is simply
zero by substituting for T by Ty in equation (3.6). From symmeitry condition, the partial

derivative of temperature with respect to y is zero at the centerline or:
ot |
(—) ~0 =0 (3.2))
oy IV =

The complete boundary conditions are shown on Figure( 3.2 ).
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Figure (3.2) Boundary conditions
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4. SOLUTION METHOD

4.1 Introduction

As long as the boundary conditions are specified, the dimensionless equations
governing laminar flow and heat transfer in rectangular cutved porous channel
developed in chapter three, Equations (3. 13) to (3.15), and (3.20) subject to the
boundary conditions shown on Figure(3.2) are ready to be solved.

An inspection of the system of equations reveals that there are three nonlinear,
second order partial differential equations, uncoupled with the energy equation of the
same characteristics. The only way to solve this system of equations is by choosing one
ﬁf the available numerical solution methods, excluding any possibility, without further

approximations to obtain a closed form analytical solution.

4.2 Finite Element Solution

A well-established numerical procedure, based on the finite element technique,
is chosen to solve this problem. At first, this procedure is verified by solving the system
of equations for the limi; cases of (1) flow in porous, curved tube with latge curvature
ratio (r), which is similar to straight tube flow, and (2) curved tube flow without porous
media. 1t is found that the results are in a very good agreement with established results.
Then, the procedure is extended to solve the system of equations considering the effect
of existing porous matrix in curved tube. Tﬁis computer software is named, Flexible

Partial Differential Equations Solution, abbreviated FlexPDE.
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4,21 Check for convergence

The iterative procedure is terminated whenever the relative error for all
dependent variables on each cell is less than a pre-adjusted value. This accuracy control
criterion (g) is defined as follows:

Ik
a*t-g®
1

qk+

where &+1 refers to the latest iteration. For the solution to be reliable, the procedure is
examined if it converges by choosing a smaller convergence criterion (g) or not. This is
done by solving and getting a solution for a certain case using at first a convergence
criterion &= 1x10™, and then repeating the solution and checking for convergence using
g = 5x107°, until ¢ = 1x107°, The results are shown on Figures (4.1) and (4.2). The
starting point of the horizontal axis (abscissa) represents the midpoint of the inner
vertical channel side. It is clear from the Figures that the results coincide almost
exactly.

The time required for the solution to converge using & = 1x107® is more than four
times that required using €= 1x10_4. Therefore, all solutions reported in this work are
considered to be satisfactory taking &= 1x10%, since the solution is almost the same,
and seeking for more accurate results will be , of course, at the expense of computer

time.

4.2.2 Check on the solution

The simple and direct way to check the solution is by comparing the results with
previous published ones. The solution to forced convection in a curved rectangular
channel, equations (3.13) to (3.16), subjected to the boundary conditions described by

Figure (3.2), using a high value for Darcy number, Da, which is the case for flow
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Figure (4.1) Effcct of convergence criterion £ on (a) centerline velocity profile
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without porous media, is compared with curved channel solutions published by Cheng
et al(1976), and Gyves et al.(1998), summarized in Table (4. lj. The expression
(explained in the next chapter) for the product of friction factor and Reynolds number,
fRe, is presented in two ways. The first, subscripted by 1 is by considering the velocity
gradiént along the wall, and the other subscripted by 2, is by considering the overall
force balance for the differential axial length. It is clear that there is a good agreement
between the present and previous results. It is also appreciable to note here that, the
ratio of fRe calculated using both expressions shown in Table (4.1), is almost the same

for the- present solution, while the difference between the corresponding values obtained
by Cheng is somewhat large, and it increases for small curvature ratios. This is another

feature for the accuracy of the present results.

4.3 About FLexPDE

4.3.1 Definition

FLexPDE is a scripted finite element model builder and numetrical solver. This
means that a script written by the user, FLexPDE performs the operations necessary to
turn a description of a partial differential equations system into a finite elemént model,
solve the system, and present graphical output of the results. The scripting language
allows the user to describe the mathematics of the partial differential equations system
and the geometry of his problem domain in a format similar to the way he might
describe it to a co-worker. For instance there is an EQUATIONS section in the script, in
which Laplace’s equation would be presented as Div(grad(N))= 0. Similarly, there is a
BOUNDARIES section in the script, where the geometric boundaries of a two-

dimensional problem domain are presented merely by walking a round the perimeter.
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4.3.2 Scope of FLexPDE

1- FLEXPDE can solve systems of first or second partial differential equations in
Cartesian or axi- symmetric two-dimensional geometry.

2- The system may be steady state or time dependent or alternatively, FLexPDE can
solve eign value problems. Steady state and time dependent equations can be mixed
in a single problem.

3- Any number of simultaneous equations can be solved subject to the limitations of
the computer on which FLexPDE is run.

4- The equations can be linear or nonlinear, Nonlinear systems are solved by applying
a modified Newton- Raphson iterative process.

5- Any number of regions of different material properties may be defined. Modeled
variables are assumed to be continuous across material interfaces. Jump conditions

on derivatives follow from the statement of the PDE system.

4.3.3 Main steps of FLexPDE solving
FLexPDE is a fully integrated PDE solver, combining several modules to

provide a complete problem solving system.

1- A script-editing module provides a full text editing facility and a graphical domain
preview. |

2- A symbolic equation analyzer expands defined parameters and relations, perform
spatial differentiation, and symbolically apply integration by parts to reduce second
order terms to create symbolic Galerkein equations. It then differentiates these
equations to term the Jacobian coupling matrix.

3- A mesh generation module controls a triangular finite element mesh over an

arbitrary two-dimensional problem domain. In three-dimensional problems, the 2-D
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mesh is extruded into a tetrahedral mesh covering an arbitrary number of nonplaner
layers in the extrusion dimension.

4- A Finite Element numerical analysis module selects an appropriate solution scheme
for steady state, time dependent or eigen-value problems, with separate procedures
for linear and nonlinear system. Finite element basis may be either quadratic or
cubic.

5- An error estimation procedure measures the adequacy of the mesh and refines the
mesh whenever the error is large. The system iterates the mesh refinement and
solution until user- defined error tolerance is achieved.

6- A graphical output module accepts arbitrary algebraic functions of the solution and
plots contour, surface, vector or elevation plots.

7- A data export module can write reports in many formats, including simple tables, full

finite element mesh data, CDF or Tecplot compatible.
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Dw,
FyRe= (G|, (5.4)
where (?) is the axial velocity gradient at the wall, and nis the dimensionless
n

inward-drawn normal.

In addition to the boundary frictional drag, the fully developed flow through
a porous duct experiences a bulk frictional drag induced by the solid matrix known as
Darcy’s pressute drop, and a flow inertia drag induced by the solid matrix, at high flow
rate designated as Forchheimers form drag. The latter term is neglected since the flow
inertia term in the momentum equation is not included. The bulk friction (Darcy)

coefficient is defined as follows; Hwang and Chao (1992) :

PG i Y VO 655
and;
o Re=%D a1 (5.6)

c¢) Nusselt number , Nu : the local Nusselt number distribution is presented to show the
strong effect of curved channel flow on heat transfer characteristics.

By definition the local Nusselt number is defined as follows:

WD - at)|
Nu=—" e O00% 6.7
ket
f m

where h is the local heat transfer coefficient, kr is the thermal conductivity of the fluid,

and t,, isthe dimensionless mean fluid bulk temperature defined in a manner similar to

that outlined for w above, i.e.
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_fftwdxdy
M= rrwdxdy G3)

The peripheral average Nusselt number, Nu, can be obtained by integrating the

local Nusselt number over the periphery of the channel cross-section.

Nu=— j,Nud¢ (5.9)
p

where p is the perimeter of the duct, and £ is the distance along the perimeter.

d) Darcy number, Da: it is defined as the ratio of the permeability of porous media to

the square of the hydraulic diameter of the cross sectional area of the channel.

Da= K2 (5.10)
< Dh

5.2 The Effect of Curvature Ratio

It is useful to be noted that, by definition and to be in consistence with existing
literature on curved ducts, small curvature ratio represents high curvature ducts, while
large curvature ratio represents ducts of low curvature.

The results of laminar incompressible flow of viscous fluid in curved porous
square ducts of curvature ratio, r=35, 10, and 40, are shown in Figures, (5.1) through
(5.10), for constant axial pressure gradient and same Darcy number.

At low Dean numbers, the axial velocity profile is essentially parabolic and
unaltered from fuily developed, straight tube laminar flow. Figure (5.1) shows the effect

of curvature ratio on the axial centerline velocity profile. The velocity profile is plotted
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as the velocity relative to the average velocity (w/ ;), starting from the inner side of the
tube to the outer side. As it is clear from the Figure, at higher Dean numbers, the
velocity profile is no longer parabolic, and the maximum velocity is shifted outward,
away from the vertical axis of the toroid due to the centrifugal force. Also it is noted
that increasing the tube curvature (small curvature ratio), results in an increase in Dean
number, and the maximum axial velocity is decreased. Although the value of Darcy

number taken is 0.01, which means relatively high porosity, the maximum axial

velocity is greatly affected, due to the presence of porous medium, i.e. wiw is
decreased from 2(nonporous case) to about 1.4.

One of the most important resulfs for engineering applications is the estimation
of the friction factor for curved ducts. Figure (5.2) shows the results for the boundary
viscous friction, f\Re, along the periphery of the tube for r =5, 10 and 40. It is obvios
that the boundary friction increases with increasing curvature since the average velocity
decreases for the same axial pressure gradient. The Darcy friction, fpRe, for Da = 0.01
is calculated from equation (5.6) to be 50, which is considerably greater than the
average boundary friction.

Curved channel flows are characterized by the develbpment of asecondary
cross-stream flow pattern consisting of two counter-rofating vortices. The effect of
curvature ratio on secondary flow pattern in the form of stream function contours is
shown in Figures (5.3), (5.4) and (5.5). At low Dean numbers a weak secondary flow
pattern almost symmetrically located in the center of the tube half planes. It is well to
note that the value of the stream function at the eye of the vortices represents the
strength of the secondary flow. As the curvature is increased r =10, Figure (5.4),

accordingly an increase in Dean number causing an intensification of the secondary
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flow, and the center of the secondary vortices move upward in the positive y-direction
and inward in negative x-direction.

At still higher Dean numbers, Figure (5.5), the center of the secondary flow
pattern is shifted more back toward x = 0, and furthermore upward. A transition from
two vortices to four vortices flow pattern is observed by many researchers, Cheng et al;
(1976), Thangam and Hur (1990) and Gyres et al. (1998). An additional counter-
rotating pair of vortices appear near the central part of the outer wall, at a certain critical
Dean number. Whereas the Dean number at which transition occurs is 202 reported by
Cheng, it is 179, 151.1 obtained by Thangam and Gyves, respectively.

The appearance of these vortices was attributed to the unbalance between
a pressure gradient inward and the centrifugal force. Since in the region near central

outer wall, the pressure gradient across the channel in x-direction is positive, but the

centrifugal force decreases from a maximum value to zero at the outer wall. Over the
range of parameters concerned in the present work, no such secondary vortices are
observed, although it sometimes appear temporarily at some stages of the solution

progress.

The effect of curvature ratio on temperature contours (isotherms) for Pr = 1.0 is
shown in Figures (5.6), (5.7) and (5.8). It can be seen that the curvature of the tube has
a significant effect on temperature. As the curvature is increased from r=40tor=35,
the temperature is decreased and the location of maximum temperature is shifted
slightly away toward the outer wall due to centrifugal force, this is clearly apparent
from the temperature profile at the centerline of the tube, Figure (5.9). The local Nusselt
number digtribution along the periphery of the tube is shown in Figure (5.10). The
results show that as the curvature increases from r = 40 tor=>5, the local Nusselt

number increases almost always around the periphery of the tube wall.
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5.3 The Effect of Darcy Number

The effect of decreasing Darcy number, Da = 0.008, 0.006 and 0.004, while
keeping the curvature ratio at r = 10, and same axial pressure gradient is shown in
Figures (5.11) through (5.20). Figure (5.11) shows the effect of Da on the fully
developed centerline velocity profile. At Da = 0.008, the velocity profile is still has a
point of maxima located away from the vertical axis of the toroid, due to the centrifugal
force. As the Darcy number is decreased .Da =().004, the Dean number decreased and
the velocity profile is flattened due to the bulk damping caused by the presence of the
porous matrix. But the boundary layer thickness is not the same at inner and outer walls
of the tube, as it often appears in straight tube flow. This trend was reported by Hadim
(1994) , Vafai and Kim (1989) and many others.

The effect of Darcy Number on stream function contours is readily apparent
from Figures (5.13), (5.14) and (5.15). As Darcy number decreases the resistance of the
porous matrix against the flow is increased, and therefore the main flow velocity is
decreased, hence the secondary flow velocities decrease.

Once again, the situation is repeated here concerning the center of secondary
flow pattern. As Darcy number decreases the Dean number decreases and the center of
rotation of the secondary flow is moved to the right, toward the center of the tube plane,
but still almost at the same horizontal iine.

Figure (5.12) shows the effect of Darcy number on boundary friction, Although_
the Reynolds number is decreased from 1742 (De = 550) to 1062 (De = 336) as Darcy
number is decreased from 0.008 to 0.004, a slight change is happened to boundary
friction distribution and the average value of f,Re is almost the same. Also it can be
noted that the contribution of Darcy friction is very important as Darcy number is

decreased and it becomes the dominant portion of total friction.
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The effect of Darcy number on the centerline temperature profile is shown in
Figure (5.16), and on temperature isotherms is shown in Figures (5.17), (5.18) and
(5.19). It can be seen that, in contrast to velocity profile, as Darcy number decreases,
the temperature profile does not change significantly by the introduction of the solid
matrix. The results also show that the centerline temperature increases with increasing
Darcy number. This trend was reported by Kariany (1985), Vafai and Kim (1989). The
variation of Nusselt number with Darcy number is shown in Figure (5.20). It is noted
that a considerable reduction in Nusselt number is observed as Darcy number is
decreased. This can be attributed to the great reduction in the average axial velocity,

due to higher resistance of porous matrix.

5.5 The Effect of Pressure Gradient

The fluid pressure field at any point is often considered to be the sum of a cross-
stream average pressure, p(z), which is a function of the streamwise coordinate , and a
pressure, p'(x,y), which varies in the cross stream direction. As shown previously, the
latter term is eliminated from the governing equations by cross differentiation. For fully
developed flow the axial pressure gradient dp/dz is constant, which is the driving force
of the flow.

The effect of axial pressure gradient on the flow and temperature fields is shown
in Figures (5.21) to (5.28). Figure (5.21) shows the effect of pressure gradient on
velocity profile for r =15, and Da = 0.01. By increasing the pressure gradient, the down
stream velocity profile is gradually distorted from a parapoloid, and the region of
maximum axial velocity moves toward the outer wall. Unlike changing the curvature
ratio or Darcy number, duplicating pressure gradient shifts the maximum velocity

outward without any noticeable change in its magnitude.
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The axial shear stress distribution with the variation of axial pressure drop is
shown in Figure (5.22). It is obvious that more resistance against the flow accompanies
the increase in axial pressure drop from the boundaries and porous matrix inserts.

As the pressure gradient is increased, the secondary flow patterns become more
intense, and the center of secondary flow vortices move upward in the y-direction, and
inward in the negative x-direction as shown in Figures (5.23), (5.4), and (5.24). |

The dimensionless temperature, as defined before, represents the difference
between the tube wall temperature and fluid temperature. The effect of increasing
pressure gradient on temperature isotherms is shown in Figures (5.25), (5.7), and (5.26)
for Da = 0.01, r = 5, and Pr = 1, and for dp/dz= 0.1x10%, 0.15x10°, and 0.2x10°
respectively. These temperature cotours are very useful for visualizing the effects that
various parameters have on temperature field. It is noted that increasing the pressure
gradient results in an increase in the axial velocity, hence the temperature is increased,
and the contours become more dense near the outer and upper right walls. Therefore the
" maximum temperature is shifted outward, and the temperature profile become steeper in
those regions. This is illustrated in Figure (5.27).

Concerning the local Nusselt number distribution, it is noted that increasing the
pressure gradient, a considerable increase in Nusselt number is obtained as shown in
Figure (5.28). These results compared well with curved channel local Nusselt profiles

without porous media, reported by Gyves et al.(1998).

5.4 The Effect of Prandtl Number
Prandtl number is basically defined as the ratio of kinematic viscosity to the
thermal diffusivity of a fluid. For Pr= 1, heat and momentum diffuse through the fluid

at the same rates, this implies that both the temperature and velocity profiles develop
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together. If Pr >1, the velocity profile develops faster than temperature profile, while for
Pr < 1 the opposite happens, i.e. the temperature profile leads the velocity profile.

In curved tube flows, the heat transfer characteristics are greatly affected by
Prandtl number. This is due to the induced secondary flow pattern. For high Prandtl
number, convection dominates over conduction and heat will be carried over by
convection from the tube wall to the core of the tube cross-section, and due to
centrifugal forces, the temperature profile is shifted toward the outer wall. But for low
Prandtl number the conduction dominates over convection and the temperature profile
approaches the parabolic shape.

The effect of Prandt]l number on temperature isotherms, centerline temperature
profile and local Nusselt number distribution is shown in Figures (5.29) to (5.33). By
increasing Prandtl number from Pr = 0.05, Figure (5.29), the temperature isotherms
deviate from the symmetrical shape with only one maximum located at the centerline to
the double maxima above and below the centerline at Pr =5, Figure (5.31).

The effect of Prandtl number on temperature profile is shown in Figure (5.32). It
is clear from the Figure how much the temperature profile is affected by increasing
Prandtl number from 0.005 to 1. It is also noted that the maximum temperature is
shifted outward from vertical axis by increasing Prandtl number for the same Dean
number. The secondary flow present in curved tube cause a marked variation in heat
transfer rate around the periphery. This may be advantageous in instances when only a
portion of the peripheral boundary is available for energy transport. Figure (5.33) shows
the local Nusselt number distribution. It is noted that increasing Prandtl number has a

strong effect on Nusselt number.
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5.6 The Effect of Dean Number

Of fundamental interest to the development of a complete understanding of
viscous flow phenomena in curved tubes is the nature of the velocity and pressure
distributions in the fully developed flow region. Previous studies indicate that these
profiles have been found to depend strongly on the Dean number. This parameter which

characterizes curved tube flow is the ratio of centrifugal forces to viscous forces.

Figure (5.34) shows the effect of Dean number on he ave age Nusselt number, Nu, at
Pr = 1. A wide range of Darcy number is investigated to cover the situations of high
porous media, Da = 1, and low porous media, Da = 1x10°, The results show that for
high porous media, Da = 1, the average Nusselt number is strongly affected 'by

increasing Dean number. It is clear from the Figure that De =0 corresponds to straight
tube solution, where Nu = 3.6 is slightly lower than Nu = 3.62, the non-porous

straight tube solution. As Darcy number is decreased to 0.01, a slight change in Nu
from straight tube solution until De = 50, but still strongly effected by increasing Dean
number. At Da = 0.001, the average Nusselt number is weakly affected by increasing

Dean number up to about De = 200, beyond which it starts to increase. A further

decrease in Darcy number to 1x1 0%, results in a small increase in Nu, but has no effect
at all with increasing Dean number. The results are compared with tabulated porous
straight tube results reported by Hwang and Chao (1992), and a very good agreement is
observed.

The ratio of average curved tube Nusselt number to straight tube average
Nusselt number (I_\ﬂl-c / ﬁﬁs) is calculated, and the results are plotted in Figure (5.35).
Compared with that for straight tube, the curved tube average Nusselt number is
increased dramatically, especially for high porous media, Da=1.]tis interesting to

note that for all different Darcy number curves the Nusselt number ratio goes to unity as
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Darcy number goes to zero, and for Da< 1x10, Nu. /Nus is unity regardless of Dean
number variation.

The effect of Dean Number on boundary viscous friction for Da = 1x10%to 1 is
shown in Figure (5.36). It can be noted from the Figure that increasing Dean number
has a strong effect on the product of friction factor and Redyno Ids number, for Da = 1.
As Darcy number is decreased, Da = 0.1, a slight increase in fRe over Da = 1 curve up
to De = 200, then the two curves continue at the same trend. As Darcy number is
decreased to 0.01, a considerable increase in fRe is observed at low Dean numbers,
then the difference starts to diminish beyond De =400, approximately. After Darcy
pumber Da = 0.001, no change in the product fRe is observed even atlow Dean
numbers, and the product fRe is found to be 68, 190, 632 and 1938 for Da = 0.001,
1x10™%, 1x10”% and 1x10%, respectively. These results are compared for the limit case as
Dean number approaches zero with straight tube results, obtained by Hwang and Chao
(1992) and a good agreement is observed.

The Darcy friction, fpRe, due to the solid matrix is relatively small compared to
viscous friction for Da = 0.1 and above, while for low Darcy numbers it is very much
greater than fyRe. For example, atDa= 1x10°%, fpRe is as high as 250 f,Re, since at
this low value of Darcy number the flow becomes uniform across the tube due to high
resistance from the porous matrix.

The product fyRe in curved square duct is compared to that in straight tube for
Darcy numbers from 1xl1 0% to 1. The ratio {fRe)/(fRe); is plotted against Dean
number as shown in Figure (5.37). It is noted that this ratio is decreased by decreasing
Darcy number until Da= 0.001. For Da < 0.001 the ratio (fRe)J/(fRe)sis constant and

equals to 1. The friction factor ratio at Da=1 which somewhat represent the case of




49

high porous media is compared well with the results reported by Thangam and Hur
(1990).

The heat transfer performance in curved tubes is superior to that in straight
tubes. This is due to the mixing effect caused by the secondary flow. The influence of
secondary flow in the_heat transfer becomes more apparent at high Prandtl numbers.

The effect of Dean number on the average Nusselt number, for Da = 0.01 and
for Pr = 0.05, 0.5, 1 and 5, is shown in Figure (5.38). It is noted that Nu is strongly
affected by increasing Dean number at Pr =35, where as at Pr =0.05, a slight increase in
Nu is observed even at higher Dean numbers, because convection effects in the cross
stream direction are very small.

To clarify the superiority of heat transfer in curve tubes over straight tubes, the
variation of Nu./Nus is calculated and plotted against Dean number for different
Prandt! numbers, these results are shown in Figure (5.39). It is noted that the average
Nusselt number reaches about 5 times the straight tube average Nusselt number for
Pr =35,

It is useful to note the effect of Dean number on Nu for Pr=0.7, 1and 5 as

Darcy number is decreased to 0.001. The results show that increasing Prandtl number

has a weak effect on Nu up to about De = 200, except for Pr= 5, Figure (5.40)
illustrates this trend.

An interesting comparison is made to emphasize the effect of Darcy number on
Nu for Pr = 1 and 5. Figure (5.41) shows the simultaneous effects of Prandt] number
and Darcy number on. the average Nusselt number as Dean number is increased from

zero to 800. The ratio of average Nusselt numbers of curved to straight channels

(Nu, /Nu,) for Da=0.01, 0.001 and Pr = 1, 5 is shown in Figure (5.42).
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5.7 Correlation Equations

Based on the graphical results obtained in this work, it is useful to combine the
effects of Dean number, Prandtl pumber and Darcy number on the average Nusselt

number and friction factor into a correlation equations using the least squares method

for the aspect ratio A =1.
1.  Average Nusselt number, Nu:

The correlation equation for Nu is found to depend on De, Pr and Da,

two correlation equations are obtained depending on the value of Dean number;

For De <100
Nu = 3.628 +0.021De + 0.467Pr — 0.303Da (5.10)
For De > 100
Nu = 1.335De%* po# Da*®% (5.11)

2, Friction factor ratio, {fRe)./(fRe)s:
The boundary viscous friction ratio is correlated to cover two ranges of
Darcy number. For Da > 0.01 it is noted that friction factor is increased by increasing

Darcy , but for Da < 0.001 is independent of Datcy number

For Da 20.01
% =0.712 D' D" (5.12)
5

For Da < 0.001

Je i (5.13)




51

5.8 The Effect of Aspect Ratio

Curved rectangular channel fluid flow and heat transfer is encountered in many
engineering problems of practical interest. So far the aspect ratio considered is
A = 1, which corresponds to square cross section channel . Aspect ratios other than A =1
are widely investigated, Cheng et al. (1976), Thangam et al. (1990), and Gyves et al.
(2000). Previous results show that curved rectangular channels exhibit more stable
secondary cross stream flow patterns than do square channels at equal values of De.

In the present study, nonporous curved channel flow solutions are obtained for
A=1/3,0.5, 2, and 5. These results show a good agreement with that obtained by Cheng
et al. (1976), and Gyves et al. (2000), Tables (5.1) to (5.5). It is noted that the average

Nusselt number is increased by decreasing the aspect ratio, but the trend is reversed for

the average Nusselt number ratio, i.e., as A decreases the Nu, / Nus is decreased. The
effect of aspect ratio on the average Nusselt number in porous media, forA=1,1/2, 1/3
and 1/4, Da =0.01 and Pr =1 is shown in Figure (5.43). It is noted that decreasing the
aspect ratio with porous matrix present, has no significant effect on the average Nusselt
number as Dean number increases, except for low Dean numbt?rs. Solutions for A < 1/4

and De > 200 are not stable, therefore the results are not reported.
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Table (5.1) Non porous curved channel heat transfer solution
(A=1/3,Pr=1,r=100).

De Nu Nue/Nug
-dp/dz Gyves Gyves et Gyves
Present et al. Present al. Present et al.
(2000) (2000) (2000)
5000 14,62 14.72 4,800 4.812 1.00 1.001
8000 23.32 23.49 4,838 4.846 1.008 1.008
10000 29.03 29.24 4,399 4,903 1.02 1.02
14000 39.92 40.25 5.089 5110 1.061 1.063
20000 54.51 55.17 5.565 5.576 1.16 1.16
30000 75.07 76.71 6.422 6.492 1.342 1.35
40000 93.42 96.01 7.170 7.280 1.495 1.514_
50000 110.84 114.09 7.750 7.895 1.642 1.615

Table (5.2) Non porous curved channel flow field solution (A = 0.5).

De (fRe)/(fRe);

dp/idz r Gyves

et SIS O e SRS
5000 1060 16.0 16.0 16.1 1.003 1.01 1.003
10000 100 311 31.1 313 1.03 1.04 1.03
26000 100 67.1 68.1 69.3 1.24 1.24 1.22
50000 100 111.7 112.6 115.5 1.44 1.44 142
90000 100 178.6 176.6 1834 1.62 1.65 1.59
11000 100 209.7 200.7 - 1.68 1.77 -
90000 30 280.9 262.0 - 1.88 20 -
110000 30 325 3127 - 1.96 - -
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Table (5.3) Non porous curved channel heat transfer solution (A = 0.5, Pr=1).

De Nu Nuc/Nug
-dp/dz r Gyves Gyves et Gyves
Present et al, Present al. Present et al.
(2000) (2000) (2000)
5000 100 16.0 16.1 4,15 417 1.006 1.01
- 10000 100 3.1 3i.3 4.44 4.46 1,08 1.08
26000 100 67.1 69.1 6.18 6.15 1.5 1.49
50000 100 11,7 115.5 7.66 7.67 1.85 1.85
20000 100 178.6 183.4 9.1 9.34 1.22 2.26
1 1000 100 209.7 - 9,66 - - -
20000 30 280.9 - 10.86 - - -
110000 30 325 - 11.64 - - -

Table (5.4) Nonporous curved channel flow and heat transfer solution

(h=2,Pr=1).
De Uca’fs)l m:(fs)g Nu
-dp/dz r Cheng et Cheng et Cheng et
present al. present al, present al. present
(1976) (1976) (1976)

5000 100 159 15.9 1.01 1.0 1.01 Lol 4.225
10000 100 29.9 315 1.07 1.02 1.07 1.03 o477
26000 100 69.7 72.2 1.20 1.16 1.20 1.17 5.94
40000 100 101.5 103.5 1.27 1.25 1.27 1.25 6.58
60000 100 144.5 143.8 1.34 1.36 1.33 1.35 7.18
90000 100 189.3 197.3 1.53 1.52 1.53 1,48 8.55
80000 30 279 278.6 1.67 1.81 1.68 1.70 9.73
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Table (5.5) Nonporous curved channel flow and heat transfer solution

(A=5,Pr=1).
De Orc#‘s)l (fc(fs)z -I':J_u
-dp/dz r Cheng et Cheng et Cheng et
present al. present al. present al. present
(1976) (1976) (1976)

8000 100 209 20.8 1.00 1.00 1.00 1.00 5.80
14000 100 36.0 36.0 1.02 1.00 1.02 102 5.98
30000 100 74.4 76.9 1.06 1.02 1.06 1.02 6.52
50000 100 119.8 123.1 1.09 1.06 1.09 1.07 6.96
80000 100 184.1 171.8 1.14 1.28 1.14 1.22 7.37
80000 30 3125 281.8 1.22 1.55 1.22 1.36 8.13
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6. CONCLUSIONS

The fully developed laminar flow and heat transfer in curved rectangular porous
channels is approached numerically using finite element method. The effects of Dean
number, Darcy number, Prandtl number and aspect ratio ofthe tube on the field and
heat transfer characteristics are investigated.

The numerical results show that, Darcy number less than or equal to 1x10 has
no effect at all on the average Nusselt number and boundary viscous friction for any
Dean number. On the other hand, for Darcy number less than or equal to 0.001, the
frictional drag due to the presence of solid matrix is dominated and increases markedly
as Darcy number decreases.

It is found that heat transfer in curved rectangular channels is supetior to that in
straight channels at higher Dean numbers and Prandtl numbers. This is due to the bletter
mixing resulting from the presence of secondary flow vortices in the cross-stream flow.

A comparison with available published theoretical results for the limit cases of
porous channels with high curvature ratio, and nonporous curved channels indicates
a good agreement. The effect of channel aspect ratio is also studied. The results show
that decreasing the aspect ratio in porous rectangular channels has less effect on the
average Nusselt number, Correlation equations for the average Nusselt number and

friction factor ratios are also developed.
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7. RECOMMENDATIONS

This study can be extended to cover more engineering applications. Therefore it

is recommended that the following cases can be taken into account:

1- Laminar flow and heat transfer in rectangular curved tubes taking into consideration
the variable porosity especially near the boundaries, which results in the channeling
effect.

2- Laminar flow and heat transfer in curved tubes of circular cross section with porous
media.

3- Laminar flow and heat transfer in curved tubes of circular and rectangular cross
section with variable fluid properties such as density.

4. Laminar flow and heat transfer in curved tubes partially filled with porous media,
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Figure (5.1) Effect of curvature ratio on axial center line velocity profite, dp/dz = 150000,

Da =0.01.
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Figure (5.2) Effect of curvature ratio on axial shear stress, dp/dz = 150000, Da = 0.01.
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Figure (5.6) Temperature contours, dp/dz = 150000, Da = 0.01, De =291, r = 10.
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Figure (5.7) Temperature contours, dp/dz = 150000, Da = 0.01, De = 151, r = 40.
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